IPC-7351B Electronic Component
Zero Orientation
For CAD Library Construction
CONTENTS

1 INTRODUCTION .. 1
 1.1 Scope ... 1
 1.2 Purpose .. 1

2 CHIP COMPONENTS ... 3
 2.1 Chip Capacitor .. 3
 2.2 Chip Resistor .. 3
 2.3 Chip Inductor .. 3

3 MOLDED COMPONENTS ... 4
 3.1 Molded Capacitors .. 4
 3.2 Molded Diodes .. 4
 3.3 Molded Inductors ... 4

4 PRECISION WIRE-WOUND ... 5
 4.1 Precision Wire Wound Components ... 5

5 MELF COMPONENTS ... 6
 5.1 MELF Diodes .. 6
 5.2 MELF Resistors ... 6

6 ALUMINUM ELECTROLYTIC CAPACITORS .. 8
 6.1 Aluminum Electrolytic Capacitors ... 8

7 SOT COMPONENTS .. 9
 7.1 SOT23-3 ... 9
 7.2 SOT23-5 ... 9
 7.3 SOT343 .. 9
 7.4 SOT223 .. 9

8 TO COMPONENTS .. 10
 8.1 TO252 (DPAK) .. 10

9 SMALL OUTLINE GULLWING COMPONENT .. 11
 9.1 SOIC, SOP & SSOP .. 11
 9.2 TSSOP ... 11

10 SMALL OUTLINE J-LEAD COMPONENTS .. 12
 10.1 SOIC J-Lead ... 12

11 QUAD FLAT PACKAGE ... 13
 11.1 Square QFP Pin 1 on Side ... 13
 11.2 Rectangle QFP Pin 1 on Side .. 13

12 BUMPER QUAD FLAT PACKAGE .. 14
 12.1 Bump QFP Pin 1 on Side .. 14
 12.2 Bump QFP Pin 1 in Center .. 14

13 CERAMIC FLAT PACKAGE ... 15
 13.1 Ceramic Flat Package .. 15

14 CERAMIC QUAD FLAT PACKAGE .. 16
 14.1 CQFP (Ceramic Quad Flat Package) ... 16

15 PLASTIC LEADED CHIP CARRIERS .. 17
Component Orientations

INTRODUCTION

15.1 PLCC Square ... 17
15.2 PLCC Rectangular .. 17

16 LEADLESS CHIP CARRIERS .. 18
16.1 LCC Square ... 18

17 QUAD FLAT NO-LEAD ... 19
17.1 QFN Square ... 19
17.2 QFN Rectangular Vertical ... 19
17.3 QFN Rectangular Horizontal 19

18 BALL GRID ARRAY ... 20
18.1 BGA Square ... 20
18.2 BGA Rectangular .. 20

19 COMPONENT ZERO ORIENTATIONS 21
19.1 Summary ... 21
1 INTRODUCTION

1.1 Scope
To establish a consistent technique for the description of electronic component orientation, and their land pattern geometries, that facilitates and encourages a common data capture and transfer methodology amongst and between global trading partners.

1.2 Purpose
IPC, in conjunction with the International Electrotechnical Commission (IEC), have established several standards that are in the process of being coordinated. One of the standards is on the design of land patterns geometries (IPC-7351/IEC 61188-5-1); the other set is on electronic description for data transfer between design and manufacturing (IPC-2581/IEC 61182-2). In order to maintain a consistent method where these two important standards describe the component mechanical outlines, and their respective mounting platforms, a single concept must be developed that takes into account various factors within the global community.

One of these factors is that of establishing a CAD component description and land pattern standard that adopts a fixed Zero Component Orientation so that all CAD images are built with the same rotation for the purpose of assembly machine automation. The land pattern standards clearly define all the properties necessary for standardization and acceptability of a “One World CAD Library”. The main objective in defining a one world CAD library is to achieve the highest level of “Electronic Product Development Automation”. This encompasses all the processes involved from engineering to PCB layout to fabrication, assembly and test. The data format standards need this type of consistency in order to meet the efficiency that electronic data transfer can bring to the industry.

Many large firms have spent millions of dollars creating and implementing their own unique standards for their own “Electronic Product Development Automation”. These standards are proprietary to each firm and are not openly shared with the rest of the industry. This has resulted in massive duplication of effort costing the industry millions of man hours in waste and creating industry chaos and global non-standardization.

The industry associations responsible for component descriptions and tape and reel orientation have tried valiantly to influence the industry by making good standards that describe the component outlines and how they should be positioned in the delivery system to the equipment on the manufacturing floor. Suppliers of parts have either not adhered to the recommendations or have misunderstood the intent and provided their products in different orientations. The Land pattern standards (both IPC-7351 and IEC 61188-5-1) put an end to the “Proprietary Intellectual Property” and introduce a world standard so every electronics firm can benefit from Electronic Product Development Automation. The data format standards (IPC-2581 and IEC 61182-2) are an open database XML software code that is neutral to all the various CAD ASCII formats. For true machine automation to exist, the world desperately needs a neutral CAD database format that all PCB manufacturing machines can read.

The main purpose of creating the land pattern standards is to achieve reliable solder joint formation platforms; the reason for developing the data transfer structure is to improve the efficiency with which engineering intelligence is converted to manufacturing reality. Even if the neutral CAD format can drive all the manufacturing machines, it would be meaningless unless the component description standard for CAD land patterns was implemented with some consistency. Zero Component Orientation has a key role in machine automation.
The obvious choice for global standardization for EE hardware engineering, PCB design layout, manufacturing, assembly and testing processes is to incorporate the standard land pattern conventions. Any other option continues the confusion and additional manual hours of intervention in order to achieve the goals of automation. In addition, the ease of having one system export a file so that another system can accomplish the work may require unnecessary manipulation of the neutral format in order to meet the object of clear, unambiguous software code.

The design of any assembly will continue to permit arrangement and orientation of components at any orientation consistent with design standards. Starting from a commonly understood data capture concept will benefit the entire supply chain.
2 CHIP COMPONENTS

2.1 Chip Capacitor

Pin 1 on Left Side

Component

Land Pattern

2.2 Chip Resistor

Pin 1 on Left Side

Component

Land Pattern

2.3 Chip Inductor

Pin 1 on Left Side

Component

Land Pattern

Note: Pin 1 is always the “Positive” pin
3 MOLDED COMPONENTS

3.1 Molded Capacitors

Pin 1 on Left Side

Component

Land Pattern

3.2 Molded Diodes

Pin 1 on Left Side (Cathode)

Component

Land Pattern

3.3 Molded Inductors

Pin 1 on Left Side

Component

Land Pattern

Note: Pin 1 is always the “Positive” pin
4.1 Precision Wire Wound Components

Note: Pin 1 is always the “Positive” pin
5 MELF COMPONENTS

5.1 MELF Diodes

Pin 1 on Left Side (Cathode)

Component
Land Pattern

5.2 MELF Resistors

Pin 1 on Left Side

Component
Land Pattern
Note: Pin 1 is always the “Polarity Mark” pin or Cathode
6 ALUMINUM ELECTROLYTIC CAPACITORS

6.1 Aluminum Electrolytic Capacitors

Note: Pin 1 is always the “Positive” pin
7 SOT COMPONENTS

7.1 SOT23-3

Component

Pin 1 on Upper Left

Land Pattern

7.2 SOT23-5

Component

Pin 1 on Upper Left

Land Pattern

7.3 SOT343

Component

Pin 1 on Upper Left

Land Pattern

7.4 SOT223

Component

Pin 1 on Upper Left

Land Pattern
8 TO COMPONENTS

8.1 TO252 (DPAK)

Pin 1 on Upper Left

Land Pattern
9 SMALL OUTLINE GULLWING COMPONENT

9.1 SOIC, SOP & SSOP

Pin 1 on Upper Left

Component

Land Pattern

9.2 TSSOP

Pin 1 on Upper Left

Component

Land Pattern
10 SMALL OUTLINE J-LEAD COMPONENTS

10.1 SOIC J-Lead

Component

Pin 1 on Upper Left

Land Pattern
11 QUAD FLAT PACKAGE

11.1 Square QFP Pin 1 on Side

Pin 1 on Upper Left

Component

Land Pattern

11.2 Rectangle QFP Pin 1 on Side

Pin 1 on Upper Left

Component

Land Pattern
12 BUMPER QUAD FLAT PACKAGE

12.1 Bump QFP Pin 1 on Side

Pin 1 on Upper Left

Component

Land Pattern

12.2 Bump QFP Pin 1 in Center

Pin 1 on Top Center

Component

Land Pattern
13 CERAMIC FLAT PACKAGE

13.1 Ceramic Flat Package

Component

Pin 1 on Upper Left

Land Pattern
14 CERAMIC QUAD FLAT PACKAGE

14.1 CQFP (Ceramic Quad Flat Package)

Component

Pin 1 on Upper Left

Land Pattern
15 PLASTIC LEADED CHIP CARRIERS

15.1 PLCC Square

Component

Land Pattern

Pin 1 on Top Center

15.2 PLCC Rectangular

Component

Land Pattern

Pin 1 on Top Center
16 LEADLESS CHIP CARRIERS

16.1 LCC Square

Component

Pin 1 on Top Center

Land Pattern
17 QUAD FLAT NO-LEAD

17.1 QFN Square

Component (Bottom View)

Land Pattern

17.2 QFN Rectangular Vertical

Component (Bottom View)

Land Pattern

17.3 QFN Rectangular Horizontal

Component (Bottom View)

Land Pattern
Component Orientations

BALL GRID ARRAY

18 BALL GRID ARRAY

18.1 BGA Square

- Pin A1 in Upper Left

Component (Bottom View)

Land Pattern

18.2 BGA Rectangular

- Pin A1 in Upper Left

Component (Bottom View)

Land Pattern
19 COMPONENT ZERO ORIENTATIONS

19.1 Summary

Surface Mount Land Patterns

IPC-735* Component Family Breakdown:

IPC-7351 = IEC 61188-5-1, Generic requirements - land/joint considerations – General Description
IPC-7352 = IEC 61188-5-2, Sectional requirements - land/joint considerations – Discrete Components
IPC-7353 = IEC 61188-5-3, Sectional requirements - land/joint considerations – Gull-wing leads, two sides (SOP)
IPC-7354 = IEC 61188-5-4, Sectional requirements - land/joint considerations – J leads, two sides (SOJ)
IPC-7355 = IEC 61188-5-5, Sectional requirements - land/joint considerations – Gull-wing leads, four sides (QFP)
IPC-7356 = IEC 61188-5-6, Sectional requirements - land/joint considerations – J leads, four sides (PLCC)
IPC-7357 = IEC 61188-5-7, Sectional requirements - land/joint considerations – Post leads, two sides (DIP)
IPC-7358 = IEC 61188-5-8, Sectional requirements - land/joint considerations – Area Array Components (BGA)
IPC-7359 = NO IEC Document, Sectional requirements - land/joint considerations – No Lead Components (LCC)

Component Zero Orientations Pin 1 Location For CAD Library Construction

1) Chip Capacitors, Resistors and Inductors (RES, CAP and IND) – Pin 1 (Positive Pin) on Left
2) Molded Inductors (INDM), Resistors (RESM) and Tantalum Capacitors (CAPT) – Pin 1 (Positive Pin) on Left
3) Precision Wire-wound Inductors (INDP) – Pin 1 (Positive Pin) on Left
4) MELF Diodes – Pin 1 (Cathode) on Left
5) Aluminum Electrolytic Capacitors (CAPAE) – Pin 1 (Positive) on Left
6) SOT Devices (SOT23, SOT23-5, SOT223, SOT89, SOT143, etc.) – Pin 1 Upper Left
7) TO252 & TO263 (DPAK Type) Devices – Pin 1 Upper Left
8) Small Outline Gullwing ICs (SOIC, SOP, TSOP, SSOP, TSSOP) – Pin 1 Upper Left
9) Ceramic Flat Packs (CFP) – Pin 1 Upper Left
10) Small Outline J Lead ICs (SOJ) – Pin 1 Upper Left
11) Quad Flat Pack ICs (PQFP, SQFP) – Pin 1 Upper Left
12) Ceramic Quad Flat Packs (CQFP) – Pin 1 Upper Left
13) Bumper Quad Flat Pack ICs (BQFP Pin 1 Center) – Pin 1 Top Center
14) Plastic Leaded Chip Carriers (PLCC) – Pin 1 Top Center
15) Leadless Chip Carriers (LCC) – Pin 1 Top Center
16) Leadless Chip Carriers (LCCS Pin 1 on Side) – Pin 1 Upper Left
17) Quad Flat No-Lead ICs (QFN) QFNS, QFNRV, QFNRH – Pin 1 Upper Left
18) Ball Grid Arrays (BGA) – Pin A1 Upper Left